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1 Introduction

Since its introduction in the social sciences by Abbott and Forrest (1986), Sequence
Analysis (SA) has been increasingly used to study trajectories. It is considered a
key method for life-course research (e.g., Shanahan 2000; Mayer 2009; Buchmann
and Kriesi 2011; Piccarreta and Studer 2019; Liefbroer 2019; Liao and Fasang 2020;
Liao et al. 2022). The standard use of SA revolves around the creation of a typology
of trajectories with cluster analysis (Gauthier et al. 2014). This typology allows the
identification of recurrent patterns or, in other words, typical successions of states
through which the trajectories run. By doing so, it provides a holistic perspective
on the trajectories. However, despite its growing popularity in life-course research,
the standard SA procedure struggles to handle large databases (i.e., more than
40,000 cases at the time of writing the article), as the memory and computational
requirements become overwhelming. This article provides a framework for dealing
with these limitations.

Large longitudinal databases are becoming increasingly common, coming from
large sample surveys, comparative international longitudinal surveys or adminis-
trative data (e.g. Losa et al. 2014; Studer et al. 2015; von Gunten et al. 2019).
They hold great potential for life-course research for several reasons. First, and
most obviously, a large number of observations increase the power of any statistical
analyses.

Second, some of these databases allow focusing on specific, often infrequent,
subgroups of interest and compare them to the general population. For instance,
Landoes (2022) used a large administrative database to study educational paths of
asylum seekers in Switzerland, highlighting the detrimental impact of temporary
residential permits.

Third, several of these large databases come from international surveys allowing
adopting a comparative perspective. Such an analytical framework requires a
sufficient number of cases in each country to identify country-specific patterns,
generally resulting in a large overall sample. For instance, several studies have relied
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on the Survey of Health Ageing and Retirement in Europe (SHARE) (Börsch-Supan
et al. 2013) to compare the life courses in 28 European countries.

Finally, a large database offers a unique opportunity to identify atypical trajec-
tories. These trajectories might reveal particularly unusual, vulnerable or at-risk
patterns, and are not easily identified in standard smaller surveys as they tend to
be infrequent. For instance, in school-to-work transition studies, the identification
of individuals following atypical, often “at-risk,” trajectories is of central interest.
At the same time, these atypical patterns are generally uncommon, and might
therefore not be observed in smaller surveys.

To the best of our knowledge, two strategies have been employed so far to use
SA with large databases. First, some studies rely on a random subsample of the
data (see, for instance, Lorentzen et al. 2018). However, by using a subsample,
most of the large-database advantages listed above are lost. Second, Pesando
et al. (2021) proposed to overcome this limitation by “extending” the typology
identified in a subsample to the overall sample. While the strategy is appealing, it
also has its limitations. Indeed, the resulting typology might depend too strongly
on the subsample. Moreover, it might fail to identify atypical or context-specific
trajectories, which might not be sufficiently represented in the subsample.

The goal of this article is to propose a framework to create SA typologies
in large databases that overcomes these limitations. We do so by introducing
the Clustering Large Applications (CLARA) algorithm (Kaufman and Rousseeuw
1990; Ng and Han 2002; Schubert and Rousseeuw 2019) to SA, before extending
it to handle the three clustering approaches relevant for SA identified by Helske
et al. (2023). Each of these approaches have their own strengths and weaknesses,
making them particularly relevant for specific applications. First, crisp (also named
hard) clustering classifies each observation (or sequence) in exactly one type of
trajectories. This is by far the most used set of methods in SA. While the results
might be easier to interpret, it might fail to describe trajectories in-between types
and might oversimplify the information when the clustering structure is weak.
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Second, in fuzzy (also named soft) clustering, each observation is assigned with an
estimated membership strength to each cluster (see Studer 2018, for a presentation
of the methods with SA). By doing so, it can efficiently describe in-between types
trajectories. Third, the “representativness” method further aims to describe outliers
or unclassifiable sequences, and is shown to be more efficient when these trajectories
need to be identified (Helske et al. 2023).

In the second part of the article, we assess the performances of the proposed
clustering algorithms using simulations, which further allows us to provide recom-
mendations on their parameter values. We then discuss the computational burden
of the distance measures used in SA, as it also becomes an issue when working with
a large database, and draw recommendations regarding the choice of the distance
measure. Finally, we introduce and develop several methods to assess the quality of
a clustering in large databases, which is a key step to choose the number of groups.

2 Sequence Clustering in Large Databases

The creation of typologies in SA generally follows three steps (e.g. Studer 2013).
First, the trajectories are coded as sequences of states. Second, the trajectories are
compared to one another using a dissimilarity measure (see Studer and Ritschard
2016, for a review). Third, the dissimilarities between each pair of sequences are
used to create a typology of the trajectories with cluster analysis and compute its
statistical quality (Studer 2013).

This standard procedure raises computational issues when the database has
a large number of cases. Indeed, it requires to store in memory and to compute
the dissimilarities between all pairs of sequences, i.e., N(N − 1)/2 values with N

the number of cases. This rapidly becomes intractable as sample size increases,
even with modern computers, for two reasons. First, the computation of the
dissimilarities themselves might be overwhelming. We further discuss this issue in
section 4. Second, most cluster algorithms require to store all the dissimilarities in
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memory, which is also rapidly intractable. 1 These issues concern the computation
of the typology (i.e., cluster analysis), and of the cluster quality indices, which are
used to choose the number of groups, or assess the statistical quality of a typology.

2.1 CLARA: Clustering LaRge Applications

The CLARA algorithm was proposed by Kaufman and Rousseeuw (1990) and
features among the first clustering algorithms designed for large databases.2 The
general idea of the algorithm is to cluster a random subsample of the data before
“extending” this clustering to the whole dataset. By doing so, it limits the overall
computation burden and avoids storing the whole distance matrix. Contrary to
the procedure of Pesando et al. (2021), the dependence on the random subsample
is reduced by repeating the whole procedure several times and keeping only the
best solution.

More formally, CLARA works as follows. Let d(i, j) be a distance measure
between sequences i and j, N the size of the full dataset, n the size of the subsample,
K the number of groups, and I the number of iterations.

1. A subsample of n sequences is randomly drawn.

2. The distance matrix Ds of size n(n − 1)/2 between the sampled sequences is
computed.

3. The sequences of the subsample are clustered using Partioning Around
Medoids (PAM) (Kaufman and Rousseeuw 1990) in a predefined number of
groups K.

4. The medoids mk of each cluster k are identified.

5. The distances between each sequence in the whole dataset and the medoids
mk are computed, resulting in a N × K matrix.

6. Each sequence is assigned to its closest medoid.
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7. The quality of the resulting clustering is computed.

To avoid being trapped in a local maximum, the whole procedure (steps one to
seven) is repeated I times independently. These repetitions are called “iterations.”
The best solution according to the clustering quality used in the last step is kept.

The original formulation of CLARA computes the clustering quality as the
sum of distance SD as in PAM (Kaufman and Rousseeuw 1990). The criterion is
minimized to favor a clustering solution with high within-cluster homogeneity. It
is computed as follows. Let mk be the medoid of the kth cluster Ck:

SD =
k∑

i=k

∑
i∈Ck

d(i, mk) (1)

We further propose two improvements of the CLARA algorithm. First, we
aggregate identical sequences, i.e., trajectories following the exact same path. This
often occurs when studying trajectories that are constrained by social norms or
institutions. When aggregating, we keep a single row for sequences occurring
multiple times, and weight it accordingly. We then use the weighted version of the
algorithms to cluster the data (Studer 2013). This aggregation is done on the whole
dataset, and on the selected subsample. It can drastically reduce the computation
and memory burdens. Second, we initialize the PAM algorithm with the solution
found by the Ward hierarchical clustering algorithm, which, again, speeds up the
computation and might improve the quality of the resulting clustering. We use the
optimization proposed by Müllner (2013).

The original CLARA formulation allows clustering large databases using a crisp
clustering approach, where each sequence is assigned to a single given type. We now
turn to its adaptation for clustering with fuzzy clustering and “representativeness.”

2.2 Fuzzy CLARA

Fuzzy clustering aims to take into account that some clusters might overlap, with
some sequences lying in-between types. Methodologically, the fuzzy approach
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therefore allows a better description when the data is not strongly structured into
types, as in many social sciences applications. The approach is also relevant from
a life-course perspective, as we can think that some trajectories are the product
of multiple influences, resulting in sequences that are a mixture of different types
(Studer 2018).

Technically, fuzzy clustering aims to estimate a membership strength or degree
uik of sequence i to each cluster k instead of a categorical variable (D’Urso 2016).
FANNY (Kaufman and Rousseeuw 1990) and its extension “Fuzzy Relational
Clustering” (Dave and Sen 2002) feature among the most relevant algorithms for
SA as they can be used with any distance measures. However, they generally
require the computation of the whole distance matrix.

The CLARA algorithm can be extended to fuzzy clustering by replacing the
PAM algorithm by its fuzzy counterpart fuzzy c-medoids (FCMdd). As PAM,
FCMdd is based on the identification of a representative observation for each
type (Krishnapuram et al. 1999). A similar strategy can then be used to extend
the clustering from the subsample to the whole dataset based on the identified
representatives. However, instead of assigning a sequence to a single type as in
PAM, the membership strength uik of the sequence i to cluster j is computed as
follows:

uik =

(
1

d(i,mk)

)1/(m−1)

∑K
c=1

(
1

d(i,mc)

)1/(m−1) (2)

Where d(i, mk) is the distance between sequence i and representative sequence
of cluster k, K the number of groups, and m the fuzzifier. The m parameter
controls the fuzziness of the resulting clustering. Setting m close to 1 results in an
almost crisp clustering, while larger values increase the fuzziness of the partition.
According to the simulations reviewed by D’Urso (2016), a value between 1.5 and
2.5 provides the best results. He further recommends using m = 2 (as in FANNY)
and lowering the value if the algorithm fails to converge. A similar strategy can be
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used here.
The evaluation of the clustering quality of an iteration of CLARA should also

be adapted by using the objective function of the FCMdd algorithm. This objective
function reads as follows and can be interpreted as a fuzzy sum of distance to the
medoids (Krishnapuram et al. 1999):

SDf =
n∑

i=1

K∑
k

um
ikd(i, mk) (3)

To improve the estimation, the FCMdd algorithm, as implemented by De Cáceres
et al. (2010), is initialized using a combination of FANNY and Ward clustering.

2.3 Representativeness

Helske et al. (2023) propose to use the representativness of each cluster instead of
a single categorical variable to account for the clustering. This approach allows
taking into account how well each sequence is described by the clustering. By doing
so, atypical sequences, far from all sequences types can also be identified. The
representativeness Rik of sequence i to cluster k is computed using the following
formula:

Rik = 1 − d(i, mk)
dmax

(4)

With dmax a constant set to the highest observed distance. Setting this constant
requires to compute all the distances. However, it can be avoided as it can be set
theoretically to the maximum possible distance. Furthermore, as a constant, its
exact value has a low impact on most subsequent statistical analyses relying on it.

The implementation is here straightforward, as the representativness is computed
after the clustering. Furthermore, it only makes use of the distance to the medoids,
which are already computed within the CLARA algorithm.
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2.4 Conclusion

In this section, we presented the CLARA algorithm and two extensions allowing
using the “representativeness” and fuzzy clustering approaches. This algorithm
works by clustering subsamples before extending the typology to the whole dataset.
To avoid sample dependence of the results, the operation is repeated several times.
It therefore has two parameters on top of the usual ones, such as the number of
groups or the fuzziness m parameter, that need to be set by the user: n the size of
the random subsample, and I the number of iterations.

3 Simulations

To evaluate the performance of CLARA for SA, we conducted an extensive set of
simulations. These simulations allow us to compare the results of CLARA with
PAM, a standard cluster algorithm used in SA. Aside from evaluating the quality
of the results, these simulations further aims to draw guidelines on the parameters
values. We start by presenting the results for the crisp clustering, before turning
to the fuzzy approach.

3.1 Family Trajectory in India

The simulations are based on a dataset of women’s family trajectories in India
using the fourth wave of the National Family Health Survey, which is part of
the Demographic and Health Survey. The trajectories are then coded using the
following states between 12 and 35 years old: no event, sex out of union, formal
marriage, married without children, married with one, two, three or more than
four children. Our final sample consists of 188,144 women with fully observed
trajectories. The trajectories are compared using optimal matching of spells with
constant substitution costs, indel cost set to half this value and an expansion cost
of 0.25. This distance measure is sensitive to the time spent in each state and the
ordering of the states (Studer and Ritschard 2016).
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3.2 Crisp Clustering

The aim of the simulations is to identify the minimal number of iterations and
subsample size to obtain a clustering with a similar or better quality than PAM.
They work as follows. Twenty thousand sequences are randomly drawn from our
illustrative data set on family trajectories. These sequences are clustered using
PAM, which serves as a benchmark. We then cluster the same data using CLARA,
and compare the quality of the two clusterings using the average distance to
the medoids SD

N
, with SD defined according to equation (1).3 A negative value

indicates that CLARA outperforms PAM. Since the “representativness” approach
ultimately relies on crisp clustering, the results of these simulations also evaluate
this approach.

The simulations were run using a sample size n of 100, 500, 1,000, 5,000 or
10,000, and a number of groups varying between 2 and 20. The whole operation
was repeated two hundred times to ensure the stability of the results.

Figure 1 compares the quality of the clustering in eight groups (y-axis) when
using PAM and CLARA with different numbers of iterations (x-axis) and subsample
size (panel). The figure allows drawing several interesting conclusions. First, a
single iteration is risky. Indeed, we observe a high dispersion of the performances
with a single iteration. Furthermore, the quality of this single iteration might be
worse than PAM. Second, the performances increase with the number of iterations,
but only slightly after 200.

Third, the most important differences in performances are linked to sample sizes.
Generally speaking, the larger the better. For eight groups, a sample size of at
least 1,000 observations is enough. This is well over the 40 + 2 · k recommendation
of Kaufman and Rousseeuw (1990). However, a larger sample size is required for a
higher number of groups. Finally, and importantly, the CLARA algorithm regularly
outperforms PAM. This can be explained by the fact that CLARA searches over a
larger solution space than PAM if the number of iterations is high enough.

Figure 2 presents the performance of the algorithms for a varying number of
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Figure 1: Differences between the quality of CLARA and PAM (y-axis) for varying
numbers of iterations (x-axis) and subsample size (panels) for a clustering in 8
groups.
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Figure 2: Differences between the quality of CLARA and PAM (y-axis) for varying
numbers of iterations (x-axis) and numbers of groups (panels) when the sample
size is 1,000.

groups when using a subsample size of 1,000. Figure 7 in appendix A provides
the same figure for subsamples of size 10,000. Both figures highlight that a higher
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Figure 3: Difference between the quality of fuzzy CLARA and FCMdd (y-axis) for
a varying number of iterations (x-axis) and subsample sizes (panels) for a clustering
in 8 groups.

number of groups requires more iterations. While 200 iterations were enough for
8 groups, 500 iterations might improve the results for more than 10 groups. One
thousand iterations only lead to a tiny improvement with more than 16 groups in
some of the simulations.

3.3 Fuzzy Clustering

We used the same approach to evaluate the quality of the clustering results. However,
for computational reasons, we used a maximum of 600 iterations, between 2 and
15 groups, and a sample size of 100, 500, 1,000 or 2,500 sequences. As in Helske
et al. (2023), the fuzziness parameter m was set to 1.4 to ensure convergence in all
simulations. Generally speaking, fuzzy clustering requires fewer groups to describe
the data, as it also describes hybrid types.

Figure 3 compares FCMdd and fuzzy CLARA using the same strategy as for
crisp clustering. It leads to a quite different conclusion. First, all values are
negative, meaning that fuzzy CLARA generally performs better than FCMdd.
Second, the performance shows a local maximum around for 1,000 sequences, and

12



decreases with a subsample of 2,500. These two surprising results indicate that
the optimization strategy of FCMdd might be overwhelmed or trapped in a local
maximum when too many observations are used. The subsampling strategy of
CLARA overcomes this limit.4 As before, more than one iteration is better, but
only slight improvement is observed with more than 200 iterations.

3.4 Guidelines

The aim of the simulation was to assess the relative performance of the algorithms
and draw guidelines on the parameters’ values. Even if one cannot issue general
guidelines based on a single dataset, the results provide interesting insights. For
crisp clustering, the required number of iterations and the sample size mostly
depend on the expected number of types. A higher number of groups requires
more iterations. Furthermore, the sample size is more important than the number
of iterations. In other words, one would prefer a larger sample size at the cost of
fewer iterations. Practically, using a sample size between 1,000 and 10,000, and 500
hundred iterations provided good results. If one is interested in a more detailed
typology, with by definition infrequent types, increasing the subsample size and
the number of iterations is safer. We further develop in section 5.4 an indicator to
check whether a sufficient number of iterations have been used.

For fuzzy clustering, a subsample size of approximately one thousand provided
the best results. This might be sample dependent, but it indicates that a smaller
sample size might provide better results. In our simulations, 200 iterations were
generally enough with only small improvements with more iterations.

4 Distance Measures

Even if it relies on subsamples, the CLARA algorithm requires the computation
of many distances. More precisely, the distances within the subsample as well as
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Distance Complexity Expected Gain Ratio
Optimal Matching ℓ2 1

Optimal Matching of Transition ℓ2 1
Optimal matching of Spell s2 23.1

SVRspell s3 4.3
Hamming ℓ 24

Table 1: Computational Complexity of the Main Dissimilarity Measures Used in
Sequence Analysis, ℓ refers to sequence length and s the number of spells within
sequences. The expected gain ratio provides indicative ratio for the illustrative
dataset.

the distance between all observations and each medoid should be computed at
each iteration, resulting in the computation of I × (k × N + n(n − 1)/2) distances.
The computation of SA distance is more complex than most distances between
metric data, such as the Euclidean distance. For this reason, the complexity of
the distance calculation should be taken into account when choosing the distance
measure.

Table 1 presents the approximate computational complexity following (Elzinga
and Studer 2015) of the main distances measures recommended by Studer and
Ritschard (2016), namely optimal matching of transitions, optimal matching of
spells or the Hamming distance. This complexity depends either on ℓ, the length of
the sequences, or on s, the number of spells within the sequences. Following Elzinga
and Studer (2015), we further present the expected computational gain ratio for our
illustrative application. It is computed as the average number of operations required
by a given distance measure divided by this number for standard optimal matching.
According to these numbers, the Hamming distance requires approximately 24
(the length of the sequences) times fewer operations than usual optimal matching,
resulting in a much faster distance computation.

The difference between these measures mainly depends on the ratio between ℓ

and s. When s is smaller than ℓ, as it is almost always the case in social sciences,
spell-based and Hamming distances are faster than optimal matching distance. The
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optimal matching of spells is even more efficient than Hamming when the number
of spells per sequence is lower than

√
ℓ, which is often the case when using monthly

data, for instance. Otherwise, the Hamming distance features among the most
efficient.

The choice of a distance measure should always be made according to the
research question, as it defines how the trajectories are compared (Studer and
Ritschard 2016). Computational efficiency should therefore not be the primary
criteria to choose a distance measure. However, there are often several measures
suitable for a given research question. Hamming and Optimal Matching of Spells
are covering a wide range of situations depending on their parameters’ values.
Computational efficiency can then be taken into account as a secondary criterion.

5 Cluster Quality

Once clustering has been computed, one typically computes several cluster quality
indices (CQI). These indices can be used to guide the choice of the number of
groups or to tone the interpretation of the resulting typology (Studer 2013, 2021).
The CQI generally used in SA are based on the whole distance matrix and their
computation therefore face the same computational and memory issues as the
clustering itself. In this section, we discuss three different approaches to evaluate
the clustering quality in a large database.

First, one can compute the quality of the typology using bootstraps, i.e., random
subsamples of the data. This approach allows for computing the CQI commonly
used in SA with a confidence interval to account for subsampling uncertainty.

Second, one can rely on CQI computed using only the distances between each
sequence and the medoids, which are already computed within CLARA. In this
article, we present some of these CQI and adapt others to do so. We further develop
crisp and fuzzy versions of these CQI when they do not exist.

Finally, one can rely on cluster stability to estimate the quality of the typology
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Figure 4: Cluster Quality Indices Between 2 and 20 Groups Estimated by Bootstrap
With Corresponding Confidence Intervals.

(Hennig 2007, 2008). The general idea of the approach is as follows. In every
CLARA iteration, a distinct typology is created. If a strong clustering structure is
found in the data, we should retrieve similar grouping in each iteration. However, if
the data are poorly structured, different clustering solutions should pop up at each
iteration. The stability of the clustering thus informs on the underlying clustering
structure of the data, which is directly linked to the quality of the typology.

5.1 Bootstrapping Cluster Quality Indices

The cluster quality of a given typology can be estimated using a subsample of the
data. By doing so, any cluster quality index (CQI) can be used (see Studer 2013,
for a review). This is a great advantage, since these indices are already widely used
in SA.

This strategy requires us to account for the potential sample dependence of
the results, or in other words, the potential estimation error due to the sampling
procedure. The null distributions of most CQI are unknown. It is therefore
impossible to derive their standard error analytically. We propose here to rely on
bootstrapping. To minimize the estimation error, the sampling is stratified by the
clustering solution in the highest number of groups.

Figure 4 presents several CQI for different numbers of groups for our sample
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application. We used a sample size of 5,000 sequences. The 95% confidence
intervals are represented using a lighter polygon. Interestingly, these confidence
intervals are very thin, showing that the estimation procedure is precise enough.
The bootstrapped CQI indicate a clustering in 4 or 7 groups.

5.2 Medoid-Based Cluster Quality Indices

In this subsection, we present four CQI that can be directly computed from the
distances to the medoids including the Davies-Bouldin index (Davies and Bouldin
1979), the Average Medoid Silhouette (Lenssen and Schubert 2022), the XB (Xie
and Beni 1991) and the PBM index (Pakhira et al. 2004). While some of these
CQI are readily available, others require to be adapted. Furthermore, we present
or develop, when required, a fuzzy and a crisp clustering version of these CQI using
the framework proposed by Sledge et al. (2010).

5.2.1 Davies-Bouldin Index

The Davies-Bouldin (DB) index aims to measure the statistical quality of a clustering
by balancing two aspects of each cluster (Davies and Bouldin 1979): The within-
cluster homogeneity and the between-cluster separation. It relies on the notion
of cluster centers. While the barycenters (i.e., average points) are generally used,
medoids can be used as well. The homogeneity Wk of cluster k is measured using
the within-cluster average distance to its medoid mk, Wk = 1

Nk

∑
i∈Ck

d(i, mk) with
Nk the size of the kth cluster. The between-cluster separation Bkℓ is measured using
the distance between the cluster centers k and ℓ, i.e., the medoids, Bkℓ = d(mk, mℓ).

The DB index then computes for each cluster the ratio between cluster homo-
geneity and separation and combines them as follows.

DB = 1
K

K∑
i=k

max
k ̸=ℓ

Wk + Wℓ

Bkℓ

(5)

The DB index can be adapted to fuzzy clustering with representatives. Indeed,
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the measure of the between-cluster separation Bkℓ remains unchanged. The within-
cluster homogeneity should now account for the gradual membership uik of each
sequence i to cluster k. This can be achieved by weighting the average distance
Wk by the membership strength (Sledge et al. 2010):

Wk =
∑N

i uikd(i, mk)∑N
i uik

(6)

The DB index should be minimized to obtain well-separated homogeneous
clusters.

5.2.2 XB Index

The Xie-Beni (XB) index is one of the most used fuzzy CQI (Xie and Beni 1991).
It can also be employed for crisp clustering. More generally, any fuzzy CQI can
also evaluate crisp partitions by using a membership matrix filled with 0 and 1.
As the DB index, the XB index balances within-cluster homogeneity, measured
again using the weighted distances to cluster centers, and the worst between-cluster
separation, measured using the minimal distances between two cluster centers. It
is computed with the following formula:

XB =
∑N

i

∑K
k um

ikd(i, mk)
N ∗ mink ̸=ℓ d(mk, mℓ)

(7)

The XB index should then be minimized. A low value indicates homogeneous
clusters that are clearly separated.

5.2.3 PBM Index

Named after its authors, the PBM index (Pakhira et al. 2004) explicitly balances
three aspects: parsimony, homogeneity and separation. It relies on the notion of
barycenters (i.e., average points), which we replace here by the medoids. It is
computed as follows:
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PBM =
( 1

K
× E1

E
× D

)2
(8)

With K the number of groups, E = ∑N
i

∑K
k uikd(i, mk) to measure homogeneity,

and D = maxk,ℓ d(mk, mℓ) to measure cluster separation. E1 is a constant, which
captures the no-cluster homogeneity. However, since finding the overall medoid is a
complicated task in large databases, and it has no impact on the resulting choice of
a number of groups, we arbitrarily set E1 = 1 in our implementation of the index.

The PBM index should be maximized to identify parsimonious typologies, with
homogeneous and well-separated clusters.

5.2.4 Average Medoid Silhouette

The average medoid silhouette (AMS) (Lenssen and Schubert 2022) aims to simplify
the computation of the well-known average silhouette width index (Kaufman and
Rousseeuw 1990). This is achieved by using distances to medoids instead of averages
of distances to other sequences. Also named simplified silhouette width, this index
was shown to be almost as efficient as its original version (Hruschka et al. 2006).

Conceptually, the AMS index measures the coherence, at the observation level,
of the overall clustering. This is achieved by comparing the distance of each
sequence i to the medoids of its own cluster ai and the distance to the medoid of
the closest other cluster bi. The coherence is then measured with the silhouette
si = ai−bi

max(ai,bi) . The final AMS index is given by the average of the individual
silhouette values (AMS = 1

N

∑
si).

Campello and Hruschka (2006) proposed a fuzzy extension of this index named
fuzzy silhouette (FS), which reads as follows:

FS =
∑N

i=1(uia − uib)αsi∑N
i=1(uia − uib)α

(9)

With uia the highest cluster membership of sequence i, uib the second highest
one, and α a user-defined parameter. The aim of fuzzy clustering is to take into
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account hybrid-type sequences, which are heavily penalized by the silhouette. The
α parameter controls this penalization by allowing weighting the average of the
individual silhouettes using the difference between the two highest membership
strengths. When α = 0 or when the clustering is crisp, FS equals the AMS index.
For fuzzier clustering, hybrid sequences are less taken into account as α increases.
Campello and Hruschka (2006) propose to use α = 1 by default.

The AMS and the FS values range between −1 and 1, with 1 indicating a
perfectly coherent clustering. According to our experiments, the AMS values tend
to be higher than the average silhouette width. The interpretation thresholds
proposed by Kaufman and Rousseeuw (1990) should therefore not be used with
these indices.

5.3 Conclusion

We presented four CQI to measure the quality of a fuzzy or a crisp clustering in a
large database. Their properties and interpretation are summarized in Table 2.

Name Interval Min/Max Interpretation

Davies-Bouldin (DB) [0; + inf[ Min Well-separated homogeneous clusters
measured at the cluster level

Xie-Beni (XB) [0; + inf[ Min Well-separated homogeneous clusters
measured as the worst overall case

PBM ]0; + inf[ Max Parsimonious well-separated homoge-
neous clusters overall best case

PBMK ]0; + inf[ Max PBM less penalized by complexity

Average Medoid Fuzzy
Silhouette (AMS)

[−1; 1] Max Well-separated homogeneous clusters
measured at the observational level

Table 2: Summary of Medoid-Based Cluster Quality Indices

Conceptually, they measure cluster quality differently and might all be of
interest in some situations. As most of the presented CQI, the DB index balances
within-cluster homogeneity and the between-cluster separation. Importantly, these
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aspects are measured at the cluster level and then combined using the average. The
XB index uses the same two aspects. However, they are measured using the overall
within-cluster homogeneity and the worst separation between two clusters. By
focusing on the worst separation, it is expected to heavily penalize higher number
of groups, as adding a new cluster, typically results in lower distances between
cluster centers. The PBM index adds an explicit penalization of the number of
groups. This penalization can be lowered resulting in the PBMK index. Finally,
the AMS and FS indices balance homogeneity and separation at the observation
level. Furthermore, the fuzzy version of the index penalizes less hybrid sequences,
which are generally better described by fuzzy clustering.

Figure 5 presents the values of these indices for our sample application. These
indices are typically used to choose the number of groups of the resulting typology
(Studer 2013). The DB and the AMS indices opt for the 4 and 7 cluster solutions.
The PBM index, which explicitly penalizes complexity, favors 2 or 4 groups, but
local maxima are found for 7 and 11 clusters. The PBMK index orders the same
solutions differently, penalizing less complexity as expected. Finally, the XB index
leads to the choice of the 2 or 4 clusters solutions. As expected, this index heavily
penalizes complexity, as it strongly increases with the number of clusters.
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Figure 5: Values of the DB, ASM, PBM, PBMK, and XB indices according to the
number of clusters.
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5.4 Clustering Stability

The stability of a clustering method can be used to estimate the quality of the
resulting typology, but also informs on the underlying clustering structure of
the data (Hennig 2007, 2008). Clustering stability is generally estimated using
subsampling procedures such as bootstraps. We propose to rely on the CLARA
subsampling procedure to implement a similar approach. The general idea is as
follows. In each iteration of the CLARA algorithm, a distinct typology is created.
If a strong clustering structure is found in the data, the CLARA algorithm should
retrieve a similar clustering solution at (almost) each iteration. On the contrary,
if the data is poorly structured in subgroups, different clustering solutions might
arise in each iteration.

The stability is measured by looking at the similarity of clustering solutions
(Ben-Hur et al. 2001). Two similarity measures can be used: the Jaccard Coefficient
(JC) (Hennig 2007) and the Adjusted Rand Index (ARI) (Hubert and Arabie 1985).
The JC index examines whether the sequences are clustered in the same cluster
in the two partitions to define similarity. The ARI further looks at the pairs of
objects clustered into different clusters in both partition as a factor of similarity
between clusterings.

The stability index is computed using the average similarity between the retained
solution (i.e., the best CLARA iteration) and the other iterations. To mitigate the
impact of the worst CLARA iterations, the average among the best 20% of the
iterations is also computed. Figure 6 presents these values for different numbers of
groups. Looking at the trimmed average, solutions between 2 and 6 groups, 8, 9 or
11 groups feature among the most stable. Interestingly, these results are in line
with the conclusion drawn using the CQI, except regarding the 7-cluster solution.
The latter is found to be much less stable.

Looking at the stability of the CLARA typologies can also inform us on the
convergence of the algorithm. If solutions similar to the current best were found
several times, we can be more confident that the algorithm explored a solution
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Figure 6: Clustering Stability Among CLARA Iterations Measured With the
Adjusted Rand Index and the Jaccard Coefficient.

space large enough. In our simulations, we recorded at each iteration the number
of time that a solution similar to the current one was found in previous iterations.
The results showed that, on average, having recovered at least five times a solution
similar to the current best (ARI≥ 0.8) is strongly associated with outperforming
the PAM algorithm (64% vs. 10%). However, a more detailed look at the results
showed that the ARI threshold to use depends on the number of groups. An ARI
threshold of 0.9 should be favored for a fewer number of groups, while 0.7 should
be used for a higher one.

Figure 8 in the Appendix plots this information by counting the number of
times that an iteration leads to a solution similar to the best one. We used the
three ARI thresholds to consider a clustering as similar to the best one: strong
(ARI≥ 0.9), good (ARI≥ 0.8) and weak (ARI≥ 0.7). Similarly, we used three JC
thresholds, which also have theoretical foundations (see Hennig 2008, for a full
discussion): strong (JC≥ 0.8), weak (JC≥ 2/3) and minimal (JC≥ 0.5).

We observe an important drop in the number of recoveries above 11 groups. If
a very detailed description of the trajectories is needed, we might therefore want to
increase the iterations. However, the number of recoveries with ARI≥ 0.8 is always
greater than 5.

The stability of the clustering usefully complements the CQI by providing
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information on the strength of the underlying clustering structure, but also to
assess whether a sufficient number of iterations were used.

5.5 Conclusion

We reviewed three approaches to measure the quality of the clustering, each having
their own strengths and weaknesses. The bootstrapping approach allows using
the “standard” CQI, which are well known within the SA community. This is an
advantage, but it requires further computations. However, these indices are not
readily available for fuzzy clustering. Medoid-based CQI are directly computed
within CLARA and can be computed for fuzzy clustering. However, they are less
well known. Finally, the stability approach informs us on the underlying clustering
structure of the data, and on the convergence of the algorithm. It is therefore
complementary to the previous approaches.

6 Clustering Sequences in Large Data With R

In this section, we illustrate the use of the CLARA algorithm through a practical
example: the clustering of transition to adulthood trajectories in Switzerland.
The data are made publicly available in the TraMineR package (Gabadinho et al.
2011). The presented CLARA algorithm and the different strategies to evaluate the
clustering quality in large databases are made available in the WeightedCluster R

library (Studer 2013). We start by loading the required library.

library(WeightedCluster)

6.1 Data Preparation

First, we need to prepare the data by creating a state sequence object using the
seqdef command (see Gabadinho et al. 2011, for a full introduction). This object
stores all the information about our trajectories, including the data and associated
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characteristics, such as state labels. During this step, we further define proper
state labels as the original data are coded using numerical values.

data(biofam) #load illustrative data

## Defining the new state labels

statelab <- c("Parent", "Left", "Married", "Left/Married",

"Child", "Left/Child", "Left/Married/Child", "Divorced")

## Creating the state sequence object,

biofam.seq <- seqdef(biofam[, 10:25], alphabet = 0:7,

states = statelab)

We can now plot our sequences using, for instance, a chronogram.

seqdplot(biofam.seq, legend.prop = 0.2)
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6.2 CLARA Clustering

CLARA for SA is available in the seqclararange function. It is used as follows:
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bfclara <- seqclararange(biofam.seq, R = 100, sample.size = 200,

kvals = 2:10, seqdist.args = list(method = "LCS"),

parallel = TRUE, stability = TRUE)

The function requires us to specify the sequence to cluster (our biofam.seq

sequence object), the number of iterations (argument R, here set to 100 to avoid
long computation time, larger values are recommended) and the subsample size
(argument sample.size, here again set to the low value of 200 for illustrative
purpose). The number of groups in our typology is set using the kvals arguments,
here between 2 and ten groups solutions. We directly specify a range of values
that will be considered later on. Finally, we need to specify how to compute the
distance between sequences through the seqdist.args argument as a list object.
All the arguments specified here will be directly passed to the seqdist function.
Therefore, any distance measures available in seqdist can be used here. Finally,
we set stability=TRUE to estimate the stability of the clusterings among the
subsamples.

Setting parallel=TRUE, a default parallel back-end is set up using the future
framework (Bengtsson 2021). However, any parallel back-end previously defined
with the plan function will be used when parallel=FALSE. The parallel protocol
can then be adapted to specific environments, for instance some High Performance
Computing (HPC) server relies on specific protocols (MPI,...). As implied by the
name, setting progressbar=TRUE shows information (and estimated computation
time) on the progress of the computations.

6.3 Cluster Quality Indices

The values of the medoid-based CQI are shown when the result is printed, or can
be plotted using the plot command. When plotting the CQI, standardizing the
values makes it easier to identify the best solution (see Studer 2013).
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bfclara

## Avg dist PBM DB XB AMS ARI>0.8 JC>0.8 Best iter

## cluster2 9.50 0.90 1.02 0.53 0.50 70 76 93

## cluster3 7.73 0.60 1.02 0.55 0.51 62 53 11

## cluster4 6.72 0.67 0.84 0.48 0.54 55 45 39

## cluster5 5.81 0.47 0.72 0.41 0.59 48 32 99

## cluster6 5.26 0.49 0.90 0.53 0.55 23 10 59

## cluster7 4.79 0.43 0.95 0.60 0.55 15 3 76

## cluster8 4.50 0.44 0.95 0.56 0.54 4 1 98

## cluster9 4.23 0.33 0.96 0.53 0.55 4 1 83

## cluster10 4.04 0.55 0.90 0.50 0.56 6 1 14

plot(bfclara, norm = "range")
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Except the PBM index, all indices favor a five-cluster solution. The resulting
clustering is stored in the clustering element of the results. It can for instance
be used to represent the sequences in each cluster as follows.

The stability of the clustering can also be plotted using either the average value,
or the number of recoveries of a similar solution.
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plot(bfclara, stat = "stabmean")
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Here again, the five-cluster solution shows the highest CQI values. However,
the absolute number of recoveries is low for more than seven groups. A higher
number of iterations is therefore recommended. This is not surprising as we used a
low number of iterations.

plot(bfclara, stat = "stability")
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The bootclustrange function can be used to bootstrap the cluster quality
measures. It has the following arguments. The first object is the clustering to
be evaluated, as a seqclararange object, a data.frame or a vector. Second, the
sequences that were used to create the typology. We should further specify the
distance measure to use (as before), the number of bootstraps (R argument), and
the subsample size (here 500). We would generally use higher values for this last
two arguments. Finally, the parallel and progressbar arguments could be used
as before.

bCQI <- bootclustrange(bfclara, biofam.seq, seqdist.args = list(method = "LCS"),

R = 100, sample.size = 500, parallel = TRUE)

The resulting object can then be printed. The standardized value of the CQI
can also be plotted. The results lead to the same conclusion as for the medoid-based
CQI.

bCQI

## PBC HG HGSD ASW ASWw CH R2 CHsq R2sq HC

## cluster2 0.51 0.63 0.61 0.36 0.36 136.34 0.21 277.47 0.36 0.18
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## cluster3 0.57 0.73 0.70 0.37 0.37 135.08 0.35 292.57 0.54 0.15

## cluster4 0.59 0.79 0.77 0.39 0.40 124.28 0.43 284.00 0.63 0.12

## cluster5 0.61 0.85 0.84 0.43 0.44 126.37 0.51 318.88 0.72 0.09

## cluster6 0.60 0.88 0.86 0.41 0.42 117.65 0.54 308.84 0.76 0.08

## cluster7 0.57 0.89 0.87 0.40 0.40 113.83 0.58 305.67 0.79 0.08

## cluster8 0.55 0.90 0.88 0.39 0.40 108.14 0.61 296.67 0.81 0.07

## cluster9 0.54 0.91 0.90 0.39 0.40 104.09 0.63 296.15 0.83 0.07

## cluster10 0.54 0.92 0.91 0.40 0.41 100.22 0.65 289.89 0.84 0.06

plot(bCQI, norm = "zscore")
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6.4 Plotting the Typology

Once a clustering in a given number of groups has been selected, we can plot the
sequences by cluster to give a better interpretation.

seqdplot(biofam.seq, group = bfclara$clustering$cluster5)

30



 1
R

el
. F

re
q.

 (
n=

43
8)

a15 a17 a19 a21 a23 a25 a27 a29

0.
0

0.
4

0.
8

 2

R
el

. F
re

q.
 (

n=
57

0)

a15 a17 a19 a21 a23 a25 a27 a29

0.
0

0.
4

0.
8

 3

R
el

. F
re

q.
 (

n=
30

8)

a15 a17 a19 a21 a23 a25 a27 a29

0.
0

0.
4

0.
8

 4

R
el

. F
re

q.
 (

n=
51

8)

a15 a17 a19 a21 a23 a25 a27 a29

0.
0

0.
4

0.
8

 5

R
el

. F
re

q.
 (

n=
16

6)

a15 a17 a19 a21 a23 a25 a27 a29

0.
0

0.
4

0.
8 Parent

Left
Married
Left/Married
Child
Left/Child
Left/Married/Child
Divorced

6.5 Fuzzy Clustering

By setting method="fuzzy" in the seqclararange function, the fuzzy version of
the algorithm is used. It should be noted that the computations are generally
longer than for crisp clustering.

bfclaraf <- seqclararange(biofam.seq, R = 100, sample.size = 200,

kvals = 2:10, method = "fuzzy", seqdist.args = list(method = "LCS"),

parallel = TRUE)

The analyses then follow the same logic. The CQI values can be printed and
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plotted using the same command.

bfclaraf

## Avg dist PBM DB XB AMS ARI>0.8 JC>0.8 Best iter

## cluster2 8.02 0.69 1.21 0.45 0.62 NA NA 49

## cluster3 5.96 0.49 1.20 0.43 0.70 NA NA 4

## cluster4 4.90 0.32 1.28 0.41 0.74 NA NA 47

## cluster5 4.22 0.22 1.71 0.53 0.74 NA NA 6

## cluster6 3.70 0.21 1.44 0.37 0.74 NA NA 37

## cluster7 3.30 0.17 1.53 0.41 0.75 NA NA 6

## cluster8 3.03 0.14 1.61 0.38 0.74 NA NA 40

## cluster9 2.81 0.12 1.71 0.47 0.75 NA NA 31

## cluster10 2.61 0.12 1.94 0.43 0.73 NA NA 10

plot(bfclaraf, norm = "zscore")
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The XB and AMS index favor a four or six cluster solution. Several plots are
available to describe fuzzy clustering of trajectories, see Studer (2018) and the
fuzzyseqplot function. Here, we use sequence index plot ordered by membership
strength, with typical trajectories of each cluster represented at the top, leaving
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aside trajectories with low membership. In this kind of graphic, hybrid trajectories
are represented at the bottom.

fuzzyseqplot(biofam.seq, group = bfclaraf$clustering$cluster4,

type = "I", sortv = "membership", membership.threashold = 0.4)

7 Conclusion

This article aimed to adapt the CLARA algorithm for SA, and to extend it
to clustering approaches recommended by Helske et al. (2023), including fuzzy
clustering and representativeness. We further developed three approaches to
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measure the quality of the resulting clustering, which faces the same computational
issues: bootstrapping “standard” CQI, using Medoid-based CQI, and a stability
approach. All these developments are made available in the WeightedCluster

library (Studer 2013). A step-by-step example on how to use the library is provided
in Section 6.
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A Further Results
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Figure 7: Differences between the quality of CLARA and PAM (y-axis) for varying
numbers of iterations (x-axis) and numbers of groups (panels) when the sample
size is 10,000.
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Figure 8: Number of Iterations With a Clustering Similar to the Best One According
to Various Ajusted Rand Index (ARI) and Jaccard Coefficient (JC) Thresholds.

40


